The generator matrix 1 0 0 0 1 1 1 0 1 1 1 1 X X X 1 X 0 0 1 1 0 X 0 X 1 1 1 1 1 1 X 1 1 1 1 X 0 1 X 1 0 1 0 0 0 1 1 1 X 0 X+1 X+1 1 1 X X+1 1 1 0 X+1 0 X 1 1 0 X+1 X+1 1 0 1 X+1 1 1 1 X+1 0 1 1 X 1 0 0 0 1 0 1 1 0 1 0 X+1 X+1 X X X+1 1 0 X+1 1 1 1 X+1 0 0 X+1 1 1 X+1 0 X X+1 0 X+1 X 0 X+1 X X+1 X X+1 0 1 0 0 0 1 1 0 1 1 1 0 1 X X+1 0 1 X X+1 0 X 0 1 1 X 1 1 X+1 X X X 1 X+1 0 X+1 1 0 0 X+1 1 X+1 1 1 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0 X X X X X X X X X X 0 X 0 X X 0 X 0 0 X X X 0 0 0 0 0 0 X 0 0 0 0 0 0 X 0 X X 0 X X 0 0 X X 0 X X 0 X X X X X 0 X X 0 X 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 X X 0 X X X X X 0 X 0 X 0 0 0 0 X X 0 X X 0 X X X 0 X 0 0 0 0 0 0 0 0 X X X 0 X X X X X 0 0 0 0 X X 0 0 X 0 0 0 X X 0 0 0 X 0 X 0 0 X 0 0 generates a code of length 41 over Z2[X]/(X^2) who´s minimum homogenous weight is 32. Homogenous weight enumerator: w(x)=1x^0+51x^32+84x^33+152x^34+222x^35+247x^36+272x^37+298x^38+268x^39+295x^40+308x^41+297x^42+360x^43+271x^44+284x^45+216x^46+148x^47+138x^48+72x^49+54x^50+26x^51+17x^52+4x^53+6x^54+3x^56+1x^58+1x^60 The gray image is a linear code over GF(2) with n=82, k=12 and d=32. This code was found by Heurico 1.16 in 1.21 seconds.